Серверы корпоративных баз данных

Общие положения


Основная память представляет собой следующий уровень иерархии памяти. Основная память удовлетворяет запросы кэш-памяти и служит в качестве интерфейса ввода/вывода, поскольку является местом назначения для ввода и источником для вывода. Для оценки производительности основной памяти используются два основных параметра: задержка и полоса пропускания. Традиционно задержка основной памяти имеет отношение к кэш-памяти, а полоса пропускания или пропускная способность относится к вводу/выводу. В связи с ростом популярности кэш-памяти второго уровня и увеличением размеров блоков у такой кэш-памяти, полоса пропускания основной памяти становится важной также и для кэш-памяти.

Задержка памяти традиционно оценивается двумя параметрами: временем доступа (access time) и длительностью цикла памяти (cycle time). Время доступа представляет собой промежуток времени между выдачей запроса на чтение и моментом поступления запрошенного слова из памяти. Длительность цикла памяти определяется минимальным временем между двумя последовательными обращениями к памяти.

Основная память современных компьютеров реализуется на микросхемах статических и динамических ЗУПВ (Запоминающее Устройство с Произвольной Выборкой). Микросхемы статических ЗУВП (СЗУПВ) имеют меньшее время доступа и не требуют циклов регенерации. Микросхемы динамических ЗУПВ (ДЗУПВ) характеризуются большей емкостью и меньшей стоимостью, но требуют схем регенерации и имеют значительно большее время доступа.

В процессе развития ДЗУВП с ростом их емкости основным вопросом стоимости таких микросхем был вопрос о количестве адресных линий и стоимости соответствующего корпуса. В те годы было принято решение о необходимости мультиплексирования адресных линий, позволившее сократить наполовину количество контактов корпуса, необходимых для передачи адреса. Поэтому обращение к ДЗУВП обычно происходит в два этапа: первый этап начинается с выдачи сигнала RAS - row-access strobe (строб адреса строки), который фиксирует в микросхеме поступивший адрес строки, второй этап включает переключение адреса для указания адреса столбца и подачу сигнала CAS - column-access stobe (строб адреса столбца), который фиксирует этот адрес и разрешает работу выходных буферов микросхемы.
Названия этих сигналов связаны с внутренней организацией микросхемы, которая как правило представляет собой прямоугольную матрицу, к элементам которой можно адресоваться с помощью указания адреса строки и адреса столбца.

Дополнительным требованием организации ДЗУВП является необходимость периодической регенерации ее состояния. При этом все биты в строке могут регенерироваться одновременно, например, путем чтения этой строки. Поэтому ко всем строкам всех микросхем ДЗУПВ основной памяти компьютера должны прозводиться периодические обращения в пределах определенного временного интервала порядка 8 миллисекунд.

Это требование кроме всего прочего означает, что система основной памяти компьютера оказывается иногда недоступной процессору, так как она вынуждена рассылать сигналы регенерации каждой микросхеме. Разработчики ДЗУПВ стараются поддерживать время, затрачиваемое на регенерацию, на уровне менее 5% общего времени. Обычно контроллеры памяти включают в свой состав аппаратуру для периодической регенерации ДЗУПВ.

В отличие от динамических, статические ЗУПВ не требуют регенерации и время доступа к ним совпадает с длительностью цикла. Для микросхем, использующих примерно одну и ту же технологию, емкость ДЗУВП по грубым оценкам в 4 - 8 раз превышает емкость СЗУПВ, но последние имеют в 8 - 16 раз меньшую длительность цикла и большую стоимость. По этим причинам в основной памяти практически любого компьютера, проданного после 1975 года, использовались полупроводниковые микросхемы ДЗУПВ (для построения кэш-памяти при этом применялись СЗУПВ). Естественно были и исключения, например, в оперативной памяти суперкомпьютеров компании Cray Research использовались микросхемы СЗУПВ.

Для обеспечения сбалансированности системы с ростом скорости процессоров должна линейно расти и емкость основной памяти. В последние годы емкость микросхем динамической памяти учетверялась каждые три года, увеличиваясь примерно на 60% в год. К сожалению скорость этих схем за этот же период росла гораздо меньшими темпами (примерно на 7% в год).

Содержание раздела